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SUMMARY

CL-20, also known as HNIW (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaziaisowurtzitane), is
a high energy, high density material. Concerns regarding the environmental fate and transport of
CL-20 are arising due to its potential introduction into soil and water matrices. The aqueous
hydrolysis of CL-20 was investigated as a possible remediation technique. Alkaline hydrolysis
experiments were conducted at temperatures of 15, 20, 30, and 400C, with hydroxide concentrations
ranging from 0.25 to 300 mM. Like RDX and HMX, alkaline hydrolysis of CL-20 follows second-
order kinetics. CL-20 alkaline hydrolysis was found to proceed at a significantly faster rate than
RDX. The temperature dependency of the second-order rate constants was evaluated using the
Arrehnius model. The activation energy for CL-20 was found to be within close range of the
activation energies reported for RDX and HMX.

INTRODUCTION

The rate of reaction of energetic materials under alkaline conditions depends on the concen-
trations of the base and the energetic compound. Heilmann et al. (ref. 1) and Hoffsommer et al. (ref.
2) suggested that the alkaline hydrolysis of the nitramines HMX and RDX proceeds via the E-2-
elimination mechanism, which is a common elimination mechanism in organic chemistry and follows
a second-order rate law. Accordingly, the kinetics of alkaline hydrolysis of CL-20 using a strong
base (NaOH) is represented as follows

dCCL-20 = -kCC 2oC. (1)
dt

where CC_2o is the CL-20 concentration, CNaOR is the base concentration, and k2 is the second-order

rate constant. Because the consumption of NaOH cannot be accurately or conveniently measured
during the time course of reaction, it is difficult to determine the second-order rate constant (k2)
directly. However, by adjusting the experimental conditions, a pseudo-first order rate constant (k1)
can be obtained. This situation can be realized, by either maintaining the NaOH concentration
constant throughout the reaction or at least sufficiently in excess such that any change in the
concentration of the base is negligible compared to the change in concentration of CL-20. Under
such experimental conditions, equation 1 is reduced to the following pseudo-first order rate equation

dCcL-2 - k, Cc,-20 (2)
dt

where k, is given by

k, =k 2CIaoH (3)

By monitoring the CL-20 concentration during the time course of the reaction at a given NaOH
concentration and temperature, one can obtain k, using the integrated form of equation 2

lnCCL_2o nC°L2o -k 1t (4)



where CCL_20 is the initial concentration of CL-20. According to equation 4, the slopes of the semi-
logarithmic plots of the concentration-time data yield the rate constant ki. Next, by varying the NaOH
concentration at a given temperature, the second-order rate constants can be computed using
equation 3.

AQUEOUS HYDROLYSIS SETUP

Batch hydrolysis experiments were carried out at four temperatures (15, 20, 30, and 400C)
below solubility limits (homogeneous alkaline hydrolysis) and above solubility limits (heterogeneous
alkaline hydrolysis) using NaOH concentrations ranging from 0.25 to 300 mM. The temperature of
the reaction medium was regulated using a water bath (Fisher Scientific, Model Isotemp-210).

Homogeneous Alkaline Hydrolysis Experiments

De-ionized water (495 mL) containing dissolved reactant was placed in a 1-L beaker. A three-
blade propeller rotated by an overhead Cole Parmer Stirpak 4554-10 lab stirrer set at 150 rpm was
centered and lowered into the beaker and raised to a height of 1 cm above the beaker bottom. Next,
5 mL of concentration NaOH solution of appropriate molarity were added to the solution.

Heterogeneous Alkaline Hydrolysis Experiments

De-ionized water (from 291 to 297 mL) containing reactant powder was placed in a 600-mL
beaker. The propeller was centered and lowered into the beaker and the stirrer was adjusted to
1000 rpm. The high mixing speed was required to minimize CL-20 particles flotation. Next, 3 to 9
mL of concentrated NaOH solution of appropriate molarity was introduced into the solution to yield a
300 mL reaction volume.

Samples (2 mL) withdrawn periodically from the reaction were added to test tubes containing
appropriate amounts of H 2SO4 , to neutralize the sample. The purposes of neutralization are first to
quench the base hydrolysis reaction and secondly to protect the HPLC column from alkaline
conditions. The neutralized samples were further diluted with acetonitrile (1:1 by volume) prior to
analysis. All samples were analyzed immediately at the end of each run.

RESULTS AND DISCUSSION

A series of kinetic runs for the homogeneous CL-20 alkaline hydrolysis were carried out with
initial CL-20 concentrations of about 3 mg/L (-6.849 x 10-6 M) and NaOH concentrations ranging
from 0.25 to 10 mM. The experiments were performed at 15, 20, 30, and 401C. Data for the CL-20
homogeneous alkaline hydrolysis are presented in figure 1. In these studies, the molar ratio of
NaOH to CL-20 ranged from 36.5:1 to 1460:1. To validate the assumption that base concentration
in the solution was measured at the end of the experiments (when CL-20 is depleted). At the lowest
NaOH concentration used (0.25 mM at 400C), the NaOH consumption was found to be negligible
(about 2%); which supports the pseudo-first order kinetics assumption under the present
experimental conditions.
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Figure 1
Concentration-time profiles of CL-20 homogeneous alkaline hydrolysis at (a) 150C, (b) 20 0C, (c)

300 C, and (d) 400C at various alkalinities

Another set of experiments was conducted to examine the kinetics of heterogeneous CL-20
alkaline hydrolysis, with initial CL-20 concentrations at about 500 mg/L (-1.142 x 10-3 M) at 15, 20,
30, and 400. The obtained data are shown in figure 2. In these experiments, the NaOH concentration
was varied from 25 to 300 mM, with molar ratios of NaOH to CL-20 ranging from 21.9:1 to 262.8:1.
At the lowest NaOH concentration studied (25 mM at 400C) the decrease in NaOH concentration
during heterogeneous alkaline hydrolysis was about 9% and was considered to be within acceptable
limits for the application of the pseudo-first order kinetics assumption.
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Figure 2
Concentration-time profiles of CL-20 heterogeneous alkaline hydrolysis at (a) 150C, (b) 200C, (c)

300C, and (d) 400C at various alkalinities

From the concentration-time profiles (figs. 1 and 2) it is clear that the rate of alkaline hydrolysis
of CL-20 depends on alkali strength. For example, at 200C and 3 mg/L of initial CL-20, 85% of the
compound, reacts with 10 mM NaOH within 5 min; however, with 1 mM NaOH, it requires about 65
min to achieve the same degree of transformation. The temperature effect on the rate of alkaline
hydrolysis of CL-20 is also illustrated in figure 1. For instance at 1 mM NaOH and 3 mg/L of initial
CL-20, when the temperature is increased form 20 0C to 300C, the time required for the same extent
of removal (85%) drops from 65 to 12 min.

The CL-20 concentration-time profiles were used to obtain the relevant kinetic parameters for
homogeneous and heterogeneous alkaline hydrolysis, by applying non-linear regression analysis.
The computed pseudo-first order rate constants (ki) and corresponding standard errors are
presented in table 1. The experimental data correlate closely with the assumed pseudo-first order
kinetic model with excellent correlation coefficients.
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Table 1
Pseudo first-order rate constants ki (min 1 ) and corresponding correlation coefficients (R2) for

alkaline hydrolysis of CL-20 for different NaOH concentrations and temperatures

CNaoH(mM) 15 0C 20 0C 3000 400C
Homogeneous alkaline hydrolysis

0.1639 (0.0025)' 0.4086 (0.0103)10 R2 = 0.9987 R2 = 0.9982

0.0776 (0.0007) 0.1869 (0.0025) 0.8089 (0.0160)
5 R2 = 0.9994 R2 = 0.9993 R2 = 0.9991

0.0129 (0.0003) 0.0320 (0.0009) 0.1531 (0.0030) 0.5696 (0.0155)
1 R2 = 0.9961 R2 = 0.9962 R2 = 0.9986 R2 = 0.9979

0.0763 (0.0022) 0.2902 (0.0064)
0.5 R2 = 0.9963 R2 = 0.9982

0.1273 (0.0032)
R = 0.9975

Heterogeneous alkaline hydrolysis
0.0427 (0.0020) 0.1051 (0.0115)300 R2 = 0.9898 R2 = 0.9750
0.0319 (0.0012) 0.0686 (0.0021) 0.2501 (0.0155)200 R2 = 0.9945 R2 = 0.9952 R2 = 0.9853

0.0156 (0.0006) 0.0437 (0.0005) 0.1531 (0.0070) 0.4281 (0.0643)
100 R2 ='0.9928 R2 = 0.9991 R2 = 0.9860 R2 = 0.9027

0.0709 (0.0017) 0.1731 (0.0068)
50 R2 = 0.9972 R2 = 0.9915

25 0.1151 (0.0019)25 2 = 0.9988

•Numbers in parentheses are standard errors.

The k2 values were obtained as the slopes of the plots ki versus NaOH concentration (fig. 3).
The second-order rate constants obtained at homogeneous conditions (k2hor) and at heterogeneous
conditions (k 2het), by linear regression for the temperatures studied and the corresponding correlation
coefficients are presented in table 2. The values of k 2 hom are significantly higher than those obtained
for k2het, with ratios of 109, 112, 122, and 137 at temperatures of 15, 20, 30, and 400C, respectively.
The lower k 2 he, values may be attributed to mass transfer limitations that commonly occur in
heterogeneous reactions, which indicate that the heterogeneous hydrolysis of CL-20 may not be
under kinetic control.
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The second-order rate constants (k2) are calculated from the slopes of the curves.

Figure 3
Linear regression analysis using equation 3 for (a) homogeneous and (b) heterogeneous alkaline

hydrolysis of CL-20
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Table 2
Second-order rate constants (k2) and corresponding correlation coefficients (R2)

Temperature (OC) K2 hu
11 (M-min-') K2hel (MWmin")

15 16.1897 0.1481
R' = 0.9977 R' = 0.9769

20 10.0992 0.3544
RL = 0.9957 R' = 0.9607

30 161.3619 1.3119
R' = 0.9997 R' = 0.9591

40 568.7810 4.1404
------ R2 = 0.9974 R' = 0.9733

The temperature dependency of k2 can be represented by the Arrhenius law

E

k2 = Ae RT (5)

where A is the frequency factor or Arrhenius constant, E the activation energy (kJ/mol) of the
reaction, R the gas constant (8.314 J.molr'.K') and T (OK) the absolute temperature. This
expression fits the experimental data well over wide temperature ranges and is strongly suggested
from various standpoints as being a very good approximation to the true temperature dependency
(ref. 3). The parameters, A and E, are determined from a linear least square fit of the logarithm of
the obtained average second-order rate constants (table 2) against the reciprocal of the absolute
temperature as shown in figure 4. The value of the activation energy, E was calculated as 105.64
KJ/mol for homogeneous alkaline hydrolysis (R2=0.9979). The apparent activation energy for the
heterogeneous reaction was calculated as 98.81 KJ/mol (R2=0.9970). Although small, this
difference in activation energy values could be attributed to external mass-transfer limitations that
might not have been fully addressed by the mixing speed used in the heterogeneous experiments.
The activation energy values obtained for the CL-20 base hydrolysis are within close range of those
reported by Heilmann et al. (refs. 1 and 4) for RDX (99.9 kJ/mol) and HMX (111.9 kJ/mol) and the
heterogeneous activation energy reported by Christodoulatos et al. (ref. 5) for nitrocellulose (100.9
kJ/mol). The Arrhenius pre-exponential constants for the homogeneous and heterogeneous
reactions are 2.52 x 1020 and 1.34 x 1017 , respectively.

CONCLUSIONS

Alkaline hydrolysis is a simple and effective treatment technology for energetic materials
including CL-20. The alkaline hydrolysis of CL-20 above and below solubility limits follows second
order kinetics. Homogeneous alkaline hydrolysis rates of CL-20 are higher than heterogeneous
rates, and in both cases the reaction is faster in comparison to the alkaline hydrolysis of RDX. The
activation energy for CL-20 undergoing alkaline hydrolysis is within close range of the reported
activation energies for other nitrated energetic compounds. Further studies are necessary to
evaluate mass transfer effects on the alkaline hydrolysis rates of CL-20 and to identify the
intermediate and end products of the alkaline reactions.
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